Focus on...

Fundamental Research
News 14 September 2023

Geothermal plugging: what are the mechanisms and what are the levers for action?

Over time, high-temperature geothermal sites can experience plugging problems. The cause: extremely fine clays in the reinjection water, which progressively reduce the permeability of the underground environment, despite the treatments applied to the surface water. Thesis work has shed light on the mechanisms involved, and provided a glimpse of the means of action that will enable injectivity to be maintained.

Fundamental Research
News 26 May 2023

Karst aquifers: IFPEN launches a research project in hydrogeology

On May 15, 2023, the kick-off meeting for the Karst project took place. This project aims to set up a multi-scale physical modeling framework for karst aquifers. This four-part project, which is backed by an ERC Synergy grant, will improve the modeling and prediction of the behavior of these systems during potentially dangerous extreme meteorological events (droughts and floods), as well as provide a deeper understanding of how they are formed.

Issue 55 of Science@ifpen - Process Design and Modeling
News in brief

Foaming processes

Metal- and ceramic-based solid foams are porous structures that have begun to be used relatively recently in the field of chemical processes although they have been the focus of research at IFPEN for a few years already. Due to their 3D texture, made up of a multitude of juxtaposed spherical cavities (familiar in the field of heterogeneous catalysis), these structures are highly porous (around 70-80%) and have a large specific surface area. On the face of it, this is associated with good external transfer performances...
Issue 55 of Science@ifpen
News in brief

Modeling manufacturing by precipitation - A need for catalyst supports

In chemical conversion processes implementing heterogeneous catalysis, the active phase, which accelerates molecular conversions, is often deposited on a porous support. Most of the time, this support has a large internal surface area, making it possible to host a large number of active sites within a small volume. Very often, the porous support is alumina, which needs to have adequate mechanical and thermal resistances and enhance mass and heat transfer. These properties are highly dependent on the texture of the support, which itself stems from its production process...
Issue 54 of Science@ifpen
News in brief

SC5 - Manufacture of catalytic supports: a new parameter for controlling the kneading of boehmite pastes

Processes using heterogeneous catalysis require the design and development of innovative materials, with controlled mechanical and textural properties, to produce effective catalyst supports. The porous microstructure of these supports has a significant impact on the performance of the supported catalyst, since it strongly affects the support’s mechanical resistance and transport phenomena...
Individual page

Ana Teresa FIALHO BATISTA

Research Engineer in heterogeneous catalysis | PhD in Chemistry
After a Master’s Degree in Chemical Engineering (Instituto Superior Técnico, Lisbon) I pursued a PhD in heterogenous catalysis developing a multi-technique approach to the characterization and
Issue 53 of Science@ifpen
News in brief

Digital porous materials: from the virtual to very real interest!

While macroscopic models combined with experimental analysis of porosity are well established for geometrically simple pores, hierarchized and disordered microstructures defy existing frameworks and call into question conventional interpretations. We proposed a digital framework to help overcome this challenge, taking into account morphology, connectivity and pore size distribution...
Issue 50 of Science@ifpen
News in brief

Multi-scale characterization of microemulsions: what impact of asphaltenes on their properties?

In the context of the energy transition, it is expected that oil production will decrease at the same pace as the development of low-carbon energies and people’s evolving needs in this area...
Diffusion in catalysts: an often tortuous path!
News in brief

Diffusion in catalysts: an often tortuous path!

In catalytic processes, an active phase is necessary to accelerate the transformation of the molecules in the fluid treated. Most of the time, this catalytic agent is placed on a porous support with a large internal surface area, making it possible to host a large number of active sites within a small volume...
The premature ageing of oxygen carrier materials: a challenge for CLC
News in brief

The premature ageing of oxygen carrier materials: a challenge for CLC

The increase in the level of atmoshpheric CO2 and the resulting climate change are a global concern. Despite this, the use of fossil fuels continues to grow, in response to high energy demand. Combined with storage and CO2 conversion solutions, Chemical Looping Combustion processes (CLC) offer a medium-term solution to reducing the impact of energy production from fossil fuels, or even biomass...
Loss of selectivity in Fischer-Tropsch synthesis: a high-throughput study
News in brief

Loss of selectivity in Fischer-Tropsch synthesis: a high-throughput study

Faced with the current climate challenges, alternative fuels are attracting a growing interest for the mobility of the future. Of the various possible alternatives, hydrocarbons could be synthesised via a well-known process: the Fischer-Tropsch (FT) process, based on Syngas (CO and H2) produced, in particular, by biomass gasification. (...) However, the deactivation of FT catalysts is a major issue that directly impacts the costs of the process. (...) To identify these mechanisms, a multiple-stage methodology was implemented as part of a doctoral thesis...
Issue 46 of Science@ifpen - Earth Sciences and Environmental Technologies
News in brief

X-rays and Neutrons for imaging salt migration

Salt precipitation in permeable rocks is a risk faced by some energy sectors, particularly for gas storage in geological formations during operational phases (injection and extraction), when there is contact with saline aquifers. (...) This precipitation reduces the space where fluids can circulate, altering rock permeability, or even leading to plugging under certain conditions. In order to understand the underlying mechanisms behind this damaging phenomenon, experiments examining gas flow in a brine-saturated porous medium were conducted on IFPEN’s CAL-X flow test bench...